

Iris-grib v0.17

The library iris-grib provides functionality for converting between weather and
climate datasets that are stored as GRIB files and Iris cubes.
GRIB files can be loaded as Iris cubes using iris-grib so that you can use Iris
for analysing and visualising the contents of the GRIB files. Iris cubes can be saved to
GRIB files using iris-grib.

The contents of iris-grib represent the former grib loading and saving capabilities
of Iris itself. These capabilities have been separated into a discrete library
so that Iris becomes less monolithic as a library.

Loading

To use iris-grib to load existing GRIB files we can make use of the
load_cubes() function:

>>> import os
>>> import iris_sample_data
>>> import iris_grib
>>> cubes = iris_grib.load_cubes(os.path.join(iris_sample_data.path,
 'polar_stereo.grib2'))
>>> print cubes
<generator object load_cubes at 0x7f69aba69d70>

As we can see, this returns a generator object. The generator object may be iterated
over to access all the Iris cubes loaded from the GRIB file, or converted directly
to a list:

>>> cubes = list(cubes)
>>> print cubes
[<iris 'Cube' of air_temperature / (K) (projection_y_coordinate: 200; projection_x_coordinate: 247)>]

Note

There is no functionality in iris-grib that directly replicates
iris.load_cube (that is, load a single cube directly rather than returning
a length-one CubeList. Instead you could use the following, assuming that the
GRIB file you have loaded contains data that can be loaded to a single cube:

>>> cube, = list(cubes)
>>> print cube
air_temperature / (K) (projection_y_coordinate: 200; projection_x_coordinate: 247)
 Dimension coordinates:
 projection_y_coordinate x -
 projection_x_coordinate - x
 Scalar coordinates:
 forecast_period: 6 hours
 forecast_reference_time: 2013-05-20 00:00:00
 pressure: 101500.0 Pa
 time: 2013-05-20 06:00:00

This makes use of an idiom known as variable unpacking.

Saving

To use iris-grib to save Iris cubes to a GRIB file we can make use of the
save_grib2() function:

>>> iris_grib.save_grib2(my_cube, 'my_file.grib2')

Note

As the function name suggests, only saving to GRIB2 is supported.

Interconnectivity with Iris

You can use the functionality provided by iris-grib directly within Iris
without having to explicitly import iris-grib, as long as you have both Iris
and iris-grib available to your Python interpreter.

For example:

>>> import iris
>>> import iris_sample_data
>>> cube = iris.load_cube(iris.sample_data_path('polar_stereo.grib2'))

Similarly, you can save your cubes to a GRIB file directly from Iris
using iris-grib:

>>> iris.save(my_cube, 'my_file.grib2')

Getting Started

To ensure all iris-grib dependencies, it is sufficient to have installed
Iris itself, and
ecCodes [https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home] .

The simplest way to install is with
conda [https://conda.io/miniconda.html] ,
using the conda-forge channel [https://anaconda.org/conda-forge] ,
with the command

$ conda install -c conda-forge iris-grib

Development sources are hosted at https://github.com/SciTools/iris-grib .

Releases

For recent changes, see Release Notes .

Indices and tables

Contents:

	iris_grib

	iris_grib.message

	iris_grib.grib_phenom_translation

See also:

	Index

	Module Index

	Search Page

iris_grib

In this module:

	load_cubes

	save_grib2

	load_pairs_from_fields

	save_pairs_from_cube

	save_messages

Conversion of cubes to/from GRIB.

See: ECMWF GRIB API [https://software.ecmwf.int/wiki/display/GRIB/Home].

	
iris_grib.load_cubes(filenames, callback=None)

	Returns a generator of cubes from the given list of filenames.

Args:

	
	filenames:
	One or more GRIB filenames to load from.

Kwargs:

	
	callback:
	Function which can be passed on to iris.io.run_callback().

	Returns:
	A generator containing Iris cubes loaded from the GRIB files.

	
iris_grib.save_grib2(cube, target, append=False)

	Save a cube or iterable of cubes to a GRIB2 file.

Args:

	
	cube:
	The iris.cube.Cube, iris.cube.CubeList or list of
cubes to save to a GRIB2 file.

	
	target:
	A filename or open file handle specifying the GRIB2 file to save
to.

Kwargs:

	
	append:
	Whether to start a new file afresh or add the cube(s) to the end of
the file. Only applicable when target is a filename, not a file
handle. Default is False.

	
iris_grib.load_pairs_from_fields(grib_messages)

	Convert an iterable of GRIB messages into an iterable of
(Cube, Grib message) tuples.

This capability can be used to filter out fields before they are passed to
the load pipeline, and amend the cubes once they are created, using
GRIB metadata conditions. Where the filtering
removes a significant number of fields, the speed up to load can be
significant:

>>> import iris
>>> from iris_grib import load_pairs_from_fields
>>> from iris_grib.message import GribMessage
>>> filename = iris.sample_data_path('polar_stereo.grib2')
>>> filtered_messages = []
>>> for message in GribMessage.messages_from_filename(filename):
... if message.sections[1]['productionStatusOfProcessedData'] == 0:
... filtered_messages.append(message)
>>> cubes_messages = load_pairs_from_fields(filtered_messages)
>>> for cube, msg in cubes_messages:
... prod_stat = msg.sections[1]['productionStatusOfProcessedData']
... cube.attributes['productionStatusOfProcessedData'] = prod_stat
>>> print(cube.attributes['productionStatusOfProcessedData'])
0

This capability can also be used to alter fields before they are passed to
the load pipeline. Fields with out of specification header elements can
be cleaned up this way and cubes created:

>>> from iris_grib import load_pairs_from_fields
>>> cleaned_messages = GribMessage.messages_from_filename(filename)
>>> for message in cleaned_messages:
... if message.sections[1]['productionStatusOfProcessedData'] == 0:
... message.sections[1]['productionStatusOfProcessedData'] = 4
>>> cubes = load_pairs_from_fields(cleaned_messages)

Args:

	
	grib_messages:
	An iterable of iris_grib.message.GribMessage.

	Returns:
	An iterable of tuples of (iris.cube.Cube,
iris_grib.message.GribMessage).

	
iris_grib.save_pairs_from_cube(cube)

	Convert one or more cubes to (2D cube, GRIB message) pairs.
Returns an iterable of tuples each consisting of one 2D cube and
one GRIB message ID, the result of the 2D cube being processed by the GRIB
save rules.

Args:

	
	cube:
	A iris.cube.Cube, iris.cube.CubeList or
list of cubes.

	
iris_grib.save_messages(messages, target, append=False)

	Save messages to a GRIB2 file.
The messages will be released as part of the save.

Args:

	
	messages:
	An iterable of grib_api message IDs.

	
	target:
	A filename or open file handle.

Kwargs:

	
	append:
	Whether to start a new file afresh or add the cube(s) to the end of
the file. Only applicable when target is a filename, not a file
handle. Default is False.

iris_grib.message

In this module:

	GribMessage

	Section

Defines a lightweight wrapper class to wrap a single GRIB message.

	
class iris_grib.message.GribMessage(raw_message, recreate_raw, file_ref=None)

	An in-memory representation of a GribMessage, providing
access to the data() payload and the metadata
elements by section via the sections() property.

	
static messages_from_filename(filename)

	Return a generator of GribMessage instances; one for
each message in the supplied GRIB file.

Args:

	
	filename (string):
	Name of the file to generate fields from.

	
property data

	The data array from the GRIB message as a dask Array.

The shape of the array will match the logical shape of the
message’s grid. For example, a simple global grid would be
available as a 2-dimensional array with shape (Nj, Ni).

	
property sections

	Return the key-value pairs of the message keys, grouped by containing
section.

Sections in a message are indexed by GRIB section-number,
and values in a section are indexed by key strings.

	
class iris_grib.message.Section(message_id, number, keys)

	A Section of a GRIB message, supporting dictionary like access to
attributes using gribapi key strings.

Values for keys may be changed using assignment but this does not
write to the file.

	
get_computed_key(key)

	Get the computed value associated with the given key in the GRIB
message.

Args:

	
	key:
	The GRIB key to retrieve the value of.

Returns the value associated with the requested key in the GRIB
message.

	
keys()

	Return coded keys available in this Section.

iris_grib.grib_phenom_translation

In this module:

	grib1_phenom_to_cf_info

	grib2_phenom_to_cf_info

	cf_phenom_to_grib2_info

	GRIBCode

Provide grib 1 and 2 phenomenon translations to + from CF terms.

This is done by wrapping ‘_grib_cf_map.py’,
which is in a format provided by the metadata translation project.

Currently supports only these ones:

	grib1 –> cf

	grib2 –> cf

	cf –> grib2

	
iris_grib.grib_phenom_translation.grib1_phenom_to_cf_info(table2_version, centre_number, param_number)

	Lookup grib-1 parameter –> cf_data or None.

Returned cf_data has attributes:

	standard_name

	long_name

	units : a cf_units.Unit

	set_height : a scalar ‘height’ value , or None

	
iris_grib.grib_phenom_translation.grib2_phenom_to_cf_info(param_discipline, param_category, param_number)

	Lookup grib-2 parameter –> cf_data or None.

Returned cf_data has attributes:

	standard_name

	long_name

	units : a cf_units.Unit

	
iris_grib.grib_phenom_translation.cf_phenom_to_grib2_info(standard_name, long_name=None)

	Lookup CF names –> grib2_data or None.

Returned grib2_data has attributes:

	discipline

	category

	number

	
	unitsa cf_units.Unit
	The unit represents the defined reference units for the message data.

	
class iris_grib.grib_phenom_translation.GRIBCode(edition_or_string, discipline=None, category=None, number=None)

	An object representing a specific Grib phenomenon identity.

Basically a namedtuple of (edition, discipline, category, number).

Also provides a string representation, and supports creation from: another
similar object; a tuple of numbers; or any string with 4 separate decimal
numbers in it.

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 iris_grib	

 	
 	
 iris_grib.grib_phenom_translation	

 	
 	
 iris_grib.message	

Index

 C
 | D
 | G
 | I
 | K
 | L
 | M
 | S

C

 	
 	cf_phenom_to_grib2_info() (in module iris_grib.grib_phenom_translation)

D

 	
 	data (iris_grib.message.GribMessage property)

G

 	
 	get_computed_key() (iris_grib.message.Section method)

 	grib1_phenom_to_cf_info() (in module iris_grib.grib_phenom_translation)

 	
 	grib2_phenom_to_cf_info() (in module iris_grib.grib_phenom_translation)

 	GRIBCode (class in iris_grib.grib_phenom_translation)

 	GribMessage (class in iris_grib.message)

I

 	
 	
 iris_grib

 	module

 	
 iris_grib.grib_phenom_translation

 	module

 	
 	
 iris_grib.message

 	module

K

 	
 	keys() (iris_grib.message.Section method)

L

 	
 	load_cubes() (in module iris_grib)

 	
 	load_pairs_from_fields() (in module iris_grib)

M

 	
 	messages_from_filename() (iris_grib.message.GribMessage static method)

 	
 module

 	iris_grib

 	iris_grib.grib_phenom_translation

 	iris_grib.message

S

 	
 	save_grib2() (in module iris_grib)

 	save_messages() (in module iris_grib)

 	
 	save_pairs_from_cube() (in module iris_grib)

 	Section (class in iris_grib.message)

 	sections (iris_grib.message.GribMessage property)

Release Notes

What’s new in iris-grib v0.17.1

	Release

	0.17.1

	Date

	8 June 2021

Bugs Fixed

	@TomDufall [https://github.com/TomDufall] removed the empty slice
handling (originally added in v0.15.1) as this used
iris.util._array_slice_ifempty which was removed in Iris v3.0.2 and is no
longer necessary.
(PR#270) [https://github.com/SciTools/iris-grib/pull/270]

Dependencies

	now requires Iris version >= 3.0.2.

	now requires Python version >= 3.7.

What’s new in iris-grib v0.17

	Release

	0.17.0

	Date

	18 May 2021

Features

	@m1dr [https://github.com/m1dr] added support for GRIB regulation 92.1.8
for loading GRIB files where the longitude increment is not given.
(PR#261) [https://github.com/SciTools/iris-grib/pull/261]

	@lbdreyer [https://github.com/lbdreyer] added support for loading grid
point and spectral data with CCSDS recommended lossless compression, i.e.
data representation template 42.
(PR#264) [https://github.com/SciTools/iris-grib/pull/264]

Internal

	@jamesp [https://github.com/jamesp] moved CI testing to Cirrus CI.
(PR#250) [https://github.com/SciTools/iris-grib/pull/250]

What’s new in iris-grib v0.16

	Release

	0.16.0

	Date

	27 Jan 2021

Features

	@tpowellmeto [https://github.com/tpowellmeto] added support for loading
data on a “Lambert Azimuthal Equal Area Projection”,
i.e. grid definition template 3.140.
(PR#187) [https://github.com/SciTools/iris-grib/pull/187]

	@bjlittle [https://github.com/bjlittle] made all the tests runnable for a
packaged install of iris-grib, where the grib testdata files will be missing.
(PR#212) [https://github.com/SciTools/iris-grib/pull/212]

	@m1dr [https://github.com/m1dr] added support for loading statistical
fields, as encoded in production definition template 3.8, even when the
“interval time increment” value is not specified (i.e. set to “missing”).
(PR#206) [https://github.com/SciTools/iris-grib/pull/206]

	@pp-mo [https://github.com/pp-mo] ported some tests from Iris, which test
grib saving of data loaded from other formats.
(PR#213) [https://github.com/SciTools/iris-grib/pull/213]

	All grib-dependent testing is now contained in iris-grib : There are no
remaining tests in Iris which use grib.

Bugs Fixed

	@lbdreyer [https://github.com/lbdreyer] unpinned the python-eccodes
version for Travis testing, and added a workaround for a known bug in recent
versions of python-eccodes.
Previously, we could only test against python-eccodes versions “>=0.9.1,<2”.
(PR#208) [https://github.com/SciTools/iris-grib/pull/208]

	@pp-mo [https://github.com/pp-mo] fixed save operations to round off the
the integer values of vertical surfaces, instead of truncating them.
(PR#210) [https://github.com/SciTools/iris-grib/pull/210]

	@pp-mo [https://github.com/pp-mo] fixed loading of grid definition
template 3.90, “Space view perspective or orthographic grid”, which was
broken since Iris 2.3. This now produces data with an iris
Geostationary [https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coord_systems.html#iris.coord_systems.Geostationary]
coordinate system. Prior to Iris 2.3, what is now the Iris ‘Geostationary’
class was (incorrectly) named “VerticalPerspective” : When that was
corrected in Iris 2.3 [https://github.com/SciTools/iris/pull/3406] , it
broke the iris-grib loading, since the data was now incorrectly
assigned the “new-style” Iris
VerticalPerspective [https://scitools-iris.readthedocs.io/en/latest/generated/api/iris/coord_systems.html#iris.coord_systems.VerticalPerspective]
coordinate system, equivalent to the Cartopy
NearsidePerspective [https://scitools.org.uk/cartopy/docs/latest/crs/projections.html#nearsideperspective]
and Proj
“nsper” [https://proj.org/operations/projections/nsper.html] .
The plotting behaviour of this is now the same again as before Iris 2.3 :
only the Iris coordinate system has changed.
(PR#223) [https://github.com/SciTools/iris-grib/pull/223]

	@pp-mo [https://github.com/pp-mo] fixed a problem where cubes were loading from GRIB 1 with a changed coordinate
system, since eccodes versions >= 1.19. This resulted from a change to eccodes, which now returns a different
‘shapeOfTheEarth’ parameter : see eccodes issue ECC-811 [https://jira.ecmwf.int/browse/ECC-811] . This resulted
in a coordinate system with a different earth radius.
For backwards compatibilty, the earth radius has now been fixed to the same value as previously.
However, pending further investigation, this value may be technically incorrect and we may
yet decide to change it in a future release.
(PR#240) [https://github.com/SciTools/iris-grib/pull/240]

Dependencies

	now requires Iris version >= 3.0
Needed for the bugfix in
PR#223 [https://github.com/SciTools/iris-grib/pull/223] .

What’s new in iris-grib v0.15.1

	Release

	0.15.1

	Date

	24 Feb 2020

Bugs Fixed

	@pp-mo [https://github.com/pp-mo] fixed a problem that caused very slow
loading, and possible memory overflows, with Dask versions >= 2.0.
This requires Iris >= 2.4, as a new minimum dependency.
(This problem was shared with UM file access in Iris : see
https://scitools.org.uk/iris/docs/v2.4.0/whatsnew/2.4.html#bugs-fixed).
(PR#190) [https://github.com/SciTools/iris-grib/pull/190]

	@trexfeathers [https://github.com/trexfeathers] fixed all the tests to
work with the latest Iris version, previously broken since Iris >= 2.3.
(PR#184) [https://github.com/SciTools/iris-grib/pull/184]
and (PR#185) [https://github.com/SciTools/iris-grib/pull/185]

	@lbdreyer [https://github.com/lbdreyer] fixed a problem with the metadata
in setup.py.
(PR#183) [https://github.com/SciTools/iris-grib/pull/183]

Internal

	@lbdreyer [https://github.com/lbdreyer] and
@pp-mo [https://github.com/pp-mo] ported various grib-specific tests from
Iris.
(PR#191 [https://github.com/SciTools/iris-grib/pull/191] ,
PR#192 [https://github.com/SciTools/iris-grib/pull/192] ,
PR#194 [https://github.com/SciTools/iris-grib/pull/194] ,
PR#195 [https://github.com/SciTools/iris-grib/pull/195] ,
PR#198 [https://github.com/SciTools/iris-grib/pull/198] ,
PR#199 [https://github.com/SciTools/iris-grib/pull/199] ,
PR#200 [https://github.com/SciTools/iris-grib/pull/200] ,
PR#201 [https://github.com/SciTools/iris-grib/pull/201] and
PR#203 [https://github.com/SciTools/iris-grib/pull/203])

Dependencies

	now requires Iris version >= 2.4
Needed for the bugfix in
PR#190 [https://github.com/SciTools/iris-grib/pull/190] .

What’s new in iris-grib v0.15

	Release

	0.15.0

	Date

	5 Dec 2019

Features

	Updated translations between GRIB parameter code and CF standard_name or
long_name :

	additional WAFC codes, both to and from CF

	‘mass_fraction_of_cloud_liquid_water_in_air’ and ‘mass_fraction_of_cloud_ice_in_air’, both to and from CF

	‘surface_downwelling_longwave_flux_in_air’, now translates to GRIBcode(2, 0, 5, 3) (but not the reverse).

	for full details, see : https://github.com/Scitools/iris-grib/compare/c4243ae..5c314e3#diff-cf46b46880cae59e82a91c7ab6bb81ba

	Added support for loading GRIB messages with no fixed surface set in the
product definition section

	Added support for loading GRIB messages where i or j increment are not set

	Added support for saving cubes that have a “depth” coordinate

	Cubes loaded from GRIB files now contain a new GRIB_PARAM attribute, the
value of which is an instance of
iris_grib.grib_phenom_translation.GRIBCode and represents the parameter code.
When saving, if a cube has a GRIBCode attribute, this determines the parameter code
in the created message(s): This will _override_ any translation from the CF names.

Bug Fixes

	Reverted a bug that was fixed in v0.13 related to loading hybrid pressure
levels. It was agreed that the initial behaviour was correct

Dependencies

	Python 2 is no longer supported

What’s new in iris-grib v0.14

	Release

	0.14.0

	Date

	6 Mar 2019

Features

	Added support for WAFC aviation codes.

	Added loading and saving of statistically processed values over a spatial
area at a horizontal level or in a horizontal layer at a point in time
(product definition template 15 in code table 4.0)

	Release

	0.14.1

	Date

	12 Jun 2019

Bug Fixes

	Added fixes to get iris-grib working with the Python 3 compatible release of
eccodes. This included workarounds such that lists that are returned by
eccodes are converted to NumPy arrays as expected.

What’s new in iris-grib v0.13

	Release

	0.13.0

	Date

	15 Jun 2018

Features

	Added saving of data on Hybrid Pressure levels (surface type 119 in
code table 4.5).

	Added loading and saving of data on Hybrid Height levels (surface type 118 in
code table 4.5).

	Added loading and saving of data using Mercator projection (grid definition
template 10 in template table 3.1)

Note

Loading and saving for the Mercator projection is only available using
iris versions greater than 2.1.0.

	Added saving for data on irregular, non-rotated grids (grid definition
template 4 in template table 3.1)

	Added release notes for versions since 0.9.

Bug Fixes

	Fixed a bug with loading data on Hybrid Pressure levels (surface types 105
and 119 in code table 4.5).
Previously, all hybrid coordinate values, in both ‘level_pressure’ and
‘sigma’ coordinates, were loaded from the next level up,
i.e. (model_level_number + 1).

Note

This changes loading behaviour for data on hybrid pressure levels only.
This is an incompatible change, but the coefficent values previously
returned were essentially useless, with some values missing.

What’s new in iris-grib v0.12

	Release

	0.12

	Date

	25 Oct 2017

Updated to work with
ecCodes [https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home] as its
interface to GRIB files.
This is ECMWF’s replacement for the older GRIB-API, which is now deprecated.

What’s new in iris-grib v0.11

	Release

	0.11

	Date

	25 Oct 2017

Update for Iris v2.0+, using dask [https://dask.pydata.org] in place of
biggus [https://github.com/SciTools/biggus] for deferred loading.

What’s new in iris-grib v0.9

	Release

	0.9.0

	Date

	25 Jul 2016

Stable release of iris-grib to support iris v1.10

 nav.xhtml

 Table of Contents

 		
 Iris-grib v0.17

 		
 iris_grib

 		
 iris_grib.message

 		
 iris_grib.grib_phenom_translation

_static/plus.png

_static/file.png

_static/minus.png

